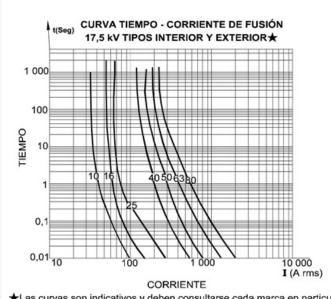
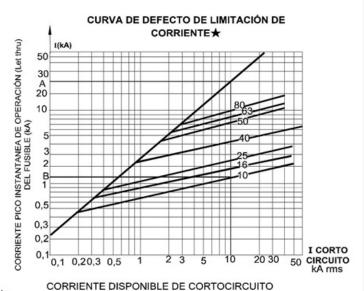


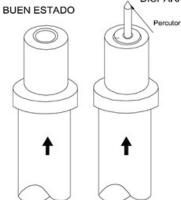
CTS507 Fusibles limitadores de corriente de rango total 17,5 kV

NORMA TÉCNICA


	VIGILADO SUPERINTENDENCIA


Elaborado por:	Revisado por:
Diseño de la Red	Diseño de la Red
Revisión #:	Entrada en vigencia:

-Esta información ha sido extractada de la plataforma Likinormas de Codensa en donde se encuentran las normas y especificaciones teor versión actualizada en http://likinormas.micodensa.com/ donde se encuentran las normas y especificaciones técnicas. Consulte siempre la



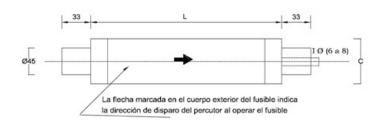
★Las curvas son indicativos y deben consultarse cada marca en particular.

DISPARADO

CARACTERISTICAS:

- Tensión nominal : 12 ó 17,5 kV
- Tensión de servicio: 11,4 ó 13,2 kV
- Capacidad mínima de de interrupción 1 3 > 2,5 In
- Corriente máxima de cortocircuito para prueba del fusible I,: 20 kA rms
- El cartucho fusible va equipado con percutor tipo liviano (con energá de 0,3± 0,25 joule)

- El valor C debe estar entre 50 y 88 mm El valor L debe estar entre 292 y 442 mm _ Debe cumplir la norma I EC 282-1.


EJEMPLO

Asumiendo una corriente de cortocircuito de 10 kA eficaz, encontramos un valor de 27 kA sin fusible en el punto (A)con un fusible de 10A el valor pico es limitado a 1,5 kA (punto(B)).

SIMÉTRICA (kA rms)

CARGA

En caso de operar el fusible, el percutor se disparará. El percutor tiene una fuerza máxima de 5 kg y 2 kg después de haber recorrido 20 mm e interviene para abrir el seccionador trifásico de operación bajo carga.

Código SAP	Fusible(A)	transformador a proteger kVA
	10	30 - 45
	16	75 - 112,5 - 150
	25	225 - 300
	40	400 - 500
	50	630
	63	750 - 800
	80	1 000

SELECCIÓN DEL FUSIBLE PARA PROTECCIÓN DEL TRANSFORMADOR

Los esfuerzos que deben soportar los fusibles son:

codensa

- Corriente de energización del transformador
- Corriente continua de operación y posibles sobrecargas
- Corrientes de falla en los terminales del secundario del transformador

Para la selección adecuada del fusible es importante tener en cuenta los 3 aspectos:

• Corriente transitoria de energización

Para evitar un envejecimiento prematuro de los fusibles se debe verificar que la corriente en la cual el fusible comienza a sufrir deformación térmica en 0,1 segundos sea siempre mayor o igual a 14 veces la corriente nominal del transformador (si se conoce la magnitud de la corriente de magnetización se puede utilizar este valor en lugar de 14 ln):

 $I_{\rm B} = I(0,1s)/14$

· Corriente normal de operación y condiciones de sobrecarga

Bajo condiciones ambientales normales (T no superior a 40°C), la corriente nominal del fusible no debe ser menor a 1,3 veces la corriente nominal del transformador.

Por lo general se selecciona el fusible dentro de los siguientes rangos:

1,31 / n transformador <= / n fusible <= 1.51 / n transformador

Si el transformador está diseñado para operar continuamente en condiciones de sobrecarga, se toma como referencia en vez de la corriente nominal del transformador, la corriente de sobrecarga.

• Corriente de falla en el secundario del transformador

La corriente a ser interrumpida no debe ser menor que la mínima capacidad de interrupción del fusible (I3).

 $I_A >= 13 \times U_7$

 $I_A < n \text{ transf} < I_B$

Adicionalmente debe asegurarse que la corriente de corto circuito sea mayor que la capacidad del fusible (2s).

Procedimiento de selección

- 1. Revisar las características del transformador a proteger: Potencia (kVA), Impedancia de corto circuito Uz (%) y corriente nominal (A).
- 2. Consultar las características de los fusibles a utilizar: Curvas Corriente vs tiempo y mínima capacidad de interrupción (I3)
- 3. Revisar las características de instalación y operación: uso interior o exterior, condiciones de sobrecarga, entre otras.
- 4. Seleccionar el rango del fusible como función de la carga nominal del transformador
- 1,3 / n transformador <= / n fusible <= 1,5 / n transformador

Si la instalación y condiciones de operación no están plenamente definidas, se debe seleccionar el rango inmediatamente superior a 1,5 ln transformador

5. Revisar que el rango del fusible es suficiente para cumplir las siguientes condiciones:

 $I_A >= I 3 \times U_Z$

I_A < I_{n transfo} < I_B

 $I_{B} = I(0,1 \text{ s})/14$

Si el fusible seleccionado no cumple con alguno de los anteriores requisitos debe seleccionar el fusible inmediatamente superior y verificar de nuevo.